Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiation in the earth’s atmosphere: its radiance, polarization, and ellipticity

Not Accessible

Your library or personal account may give you access

Abstract

The complete radiation field including polarization is calculated by the matrix operator method for a model of the real atmosphere. The radiance, direction and amount of polarization, and ellipticity are obtained at the top and bottom of the atmosphere for three values of the surface albedo (0, 0.15, 0.90) and five solar zenith angles. Scattering and absorption by molecules (including ozone) and by aerosols are taken into account together with the variation of the number density of these substances with height. All results are calculated for both a normal aerosol number and a distribution that is one-third of the normal amount at all heights. The calculated values show general qualitative agreement with the available experimental measurements. The position of the neutral points of the polarization in the principal plane is a sensitive indicator of the characteristics of the aerosol particles in the atmosphere, since it depends on the sign and value of the single scattered polarization for scattering angles around 20° and 160° for transmitted and reflected photons, respectively. This, in turn, depends on the index of refraction and size distribution of the aerosols. The neutral point position does not depend appreciably on the surface albedo and, over a considerable range, depends little on the solar zenith angle. The value of the maximum polarization in the principal plane depends on the aerosol amount, surface albedo, and solar zenith angle. It could be used to measure the aerosol amount. The details of the ellipticity curves are similar to those for scattering from pure aerosol layers and, thus, are little modified by the Rayleigh scattering. Aerosols could be identified by their characteristic ellipticity curves.

© 1976 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1: Radiance, polarization, and neutral points

George W. Kattawar, Gilbert N. Plass, and Stephen J. Hitzfelder
Appl. Opt. 15(3) 632-647 (1976)

Polarization of the Radiation Reflected and Transmitted by the Earth’s Atmosphere

G. N. Plass and G. W. Kattawar
Appl. Opt. 9(5) 1122-1130 (1970)

Degree and Direction of Polarization of Multiple Scattered Light. 2: Earth’s Atmosphere with Aerosols

Gilbert N. Plass and George W. Kattawar
Appl. Opt. 11(12) 2866-2879 (1972)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (24)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved