Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Removal of atmospheric effects from satellite imagery of the oceans

Not Accessible

Your library or personal account may give you access

Abstract

In attempting to observe the color of the ocean from satellites, it is necessary to remove the effects of atmospheric and sea surface scattering from the upward radiance at high altitude in order to observe only those photons which were backscattered out of the ocean and hence contain information about subsurface conditions. The observations that (1) the upward radiance from the unwanted photons can be divided into those resulting from Rayleigh scattering alone and those resulting from aerosol scattering alone, (2) the aerosol scattering phase function should be nearly independent of wavelength, and (3) the Rayleigh component can be computed without a knowledge of the sea surface roughness are combined to yield an algorithm for removing a large portion of this unwanted radiance from satellite imagery of the ocean. It is assumed that the ocean is totally absorbing in a band of wavelengths around 750 nm and shown that application of the proposed algorithm to correct the radiance at a wavelength λ requires only the ratio () of the aerosol optical thickness at λ to that at about 750 nm. The accuracy to which the correction can be made as a function of the accuracy to which can be found is discussed in detail. A possible method of finding from satellite measurements alone is suggested.

© 1978 Optical Society of America

Full Article  |  PDF Article
More Like This
Atmospheric correction of satellite ocean color imagery: the black pixel assumption

David A. Siegel, Menghua Wang, Stéphane Maritorena, and Wayne Robinson
Appl. Opt. 39(21) 3582-3591 (2000)

Effects of stratospheric aerosols and thin cirrus clouds on the atmospheric correction of ocean color imagery: simulations

Howard R. Gordon, Tianming Zhang, Fan He, and Kuiyuan Ding
Appl. Opt. 36(3) 682-697 (1997)

Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors

Howard R. Gordon and Menghua Wang
Appl. Opt. 33(33) 7754-7763 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved