Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Water vapor differential absorption lidar development and evaluation

Not Accessible

Your library or personal account may give you access

Abstract

A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements.

© 1979 Optical Society of America

Full Article  |  PDF Article
More Like This
Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

Noah S. Higdon, Edward V. Browell, Patrick Ponsardin, Benoist E. Grossmann, Carolyn F. Butler, Thomas H. Chyba, M. Neale Mayo, Robert J. Allen, Alene W. Heuser, William B. Grant, Syed Ismail, Shane D. Mayor, and Arlen F. Carter
Appl. Opt. 33(27) 6422-6438 (1994)

Airborne remote sensing of tropospheric water vapor with a near–infrared differential absorption lidar system

G. Ehret, C. Kiemle, W. Renger, and G. Simmet
Appl. Opt. 32(24) 4534-4551 (1993)

Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region

Andreas Fix, Felix Steinebach, Martin Wirth, Andreas Schäfler, and Gerhard Ehret
Appl. Opt. 58(22) 5892-5900 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved