Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm

Not Accessible

Your library or personal account may give you access

Abstract

The radiative transfer equation is modified to include the effect of fluorescent substances and solved in the quasi-single scattering approximation for a homogeneous ocean containing fluorescent particles with wavelength independent quantum efficiency and a Gaussian shaped emission line. The results are applied to the in vivo fluorescence of chlorophyll a (in phytoplankton) in the ocean to determine if the observed quantum efficiencies are large enough to explain the enhancement of the ocean’s diffuse reflectance near 685 nm in chlorophyll rich waters without resorting to anomalous dispersion. The computations indicate that the required efficiencies are sufficiently low to account completely for the enhanced reflectance. The validity of the theory is further demonstrated by deriving values for the upwelling irradiance attenuation coefficient at 685 nm which are in close agreement with the observations.

© 1979 Optical Society of America

Full Article  |  PDF Article
More Like This
Exact 1-D solution to the problem of chlorophyll fluorescence from the ocean

George W. Kattawar and John C. Vastano
Appl. Opt. 21(14) 2489-2492 (1982)

Factor analysis of multispectral radiances over coastal and open ocean water based on radiative transfer calculations

Juergen Fischer, Roland Doerffer, and Hartmut Grassl
Appl. Opt. 25(3) 448-456 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved