Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Remote sensing of NO using a differential absorption lidar

Not Accessible

Your library or personal account may give you access

Abstract

Single-ended remote sensing measurements of atmospheric NO have been made using differential absorption of frequency-doubled pulsed CO2 laser radiation backscattered from topographic targets. Returns were obtained from targets at ranges out to 1.4 km, and significant NO concentrations above ambient were observed over a path which crossed a traffic roadway at a range of 0.5 km. In view of the severe atmospheric water vapor absorption in the spectral region containing the NO absorption band, the range dependence of the lidar returns was also measured in order to determine the differential absorption of the ambient atmosphere. The results differed significantly from those computed from atmospheric transmission data tapes.

© 1980 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar

N. Menyuk, D. K. Killinger, and W. E. DeFeo
Appl. Opt. 21(12) 2275-2286 (1982)

Laser remote sensing of atmospheric ammonia using a CO2 lidar system

Alan P. Force, Dennis K. Killinger, William E. DeFeo, and Norman Menyuk
Appl. Opt. 24(17) 2837-2841 (1985)

Remote measurement of ethylene using a CO2 differential-absorption lidar

E. R. Murray and J. E. van der Laan
Appl. Opt. 17(5) 814-817 (1978)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved