Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Formula for the density of tangent rays over a caustic surface

Not Accessible

Your library or personal account may give you access

Abstract

The geometrical flux density (irradiance) is singular over caustic surfaces and, therefore, cannot be used effectively as a measure of the concentration of rays at or near the caustic surfaces. A finite substitute measure, the density of rays tangent to the caustic, may be obtained by dividing an element of incident flux by the area of the caustic formed by the associated rays. This gives a measure of the energy density over different regions of the caustic. As an example, the ray density over the caustic is evaluated for collimated light reflected from a spherical mirror. A similar calculation is performed for collimated light refracted by a plano-convex singlet lens. General formulas are presented for computing the ray density over the caustic for reflection of meridional rays by an aspheric surface. Also analytical and numerical algorithms are given for evaluating the ray density over the caustic in a multiinterface optical system.

© 1982 Optical Society of America

Full Article  |  PDF Article
More Like This
Analytical illuminance and caustic surface calculations in geometrical optics

David L. Shealy
Appl. Opt. 15(10) 2588-2596 (1976)

Simplified formula for the illuminance in an optical system

Donald G. Burkhard and David L. Shealy
Appl. Opt. 20(5) 897-909 (1981)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (120)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.