Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles

Not Accessible

Your library or personal account may give you access

Abstract

An airborne differential absorption lidar (DIAL) system has been developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. The multipurpose DIAL system can operate from 280 to 1064 nm for measurements of ozone, sulfur dioxide, nitrogen dioxide, water vapor, temperature, pressure, and aerosol backscattering. The laser transmitter consists of two narrow linewidth Nd:YAG pumped dye lasers with automatic wavelength control. The DIAL wavelengths are transmitted with a 100-μsec temporal separation to reduce receiver system complexity. A coaxial receiver system is used to collect and optically separate the DIAL and aerosol lidar returns. Photomultiplier tubes detect the back-scattered laser returns after optical filtering, and the analog signals from three tubes are digitized and stored on high-speed magnetic tape. Real-time gas concentration profiles or aerosol backscatter distributions are calculated and displayed for experiment control. Operational parameters for the airborne DIAL system are presented for measurements of ozone, water vapor, and aerosols in the 290-, 720-, and 600-nm wavelength regions, respectively. The first ozone profile measurements from an aircraft using the DIAL technique are discussed in this paper. Comparisons between DIAL and in situ ozone measurements show agreement to within ±5 ppbv in the lower troposphere. Lidar aerosol data obtained simultaneously with DIAL ozone measurements are presented for a flight over Virginia and the Chesapeake Bay. DIAL system performance for profiling ozone in a tropopause folding experiment is evaluated, and the applications of the DIAL system to regional and global-scale tropospheric investigations are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article
More Like This
Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region

Andreas Fix, Felix Steinebach, Martin Wirth, Andreas Schäfler, and Gerhard Ehret
Appl. Opt. 58(22) 5892-5900 (2019)

Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

Noah S. Higdon, Edward V. Browell, Patrick Ponsardin, Benoist E. Grossmann, Carolyn F. Butler, Thomas H. Chyba, M. Neale Mayo, Robert J. Allen, Alene W. Heuser, William B. Grant, Syed Ismail, Shane D. Mayor, and Arlen F. Carter
Appl. Opt. 33(27) 6422-6438 (1994)

Compact airborne lidar for tropospheric ozone: description and field measurements

Gérard Ancellet and François Ravetta
Appl. Opt. 37(24) 5509-5521 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved