Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiative transfer in an atmosphere–ocean system: an azimuthally dependent matrix-operator approach

Not Accessible

Your library or personal account may give you access

Abstract

Azimuthally dependent shortwave radiance in an atmosphere–ocean system is calculated for different types and concentrations of suspended matter in ocean and atmosphere. The transfer code, the matrix-operator method, is also applied to a rough ocean surface. With emphasis on remote sensing of oceanic constituents conditions for measurements are simulated to estimate the contribution of phytoplankton, sediment, and yellow substances to the ocean-leaving radiance within the 0.415–0.740-μm wavelength interval. The masking of these upward radiances by surface reflection and atmospheric extinction is discussed. In most conditions upward spectral radiance in the nadir direction usually contains the highest proportion of the oceanic underlight, even for an ocean surface roughened by 7-m/sec wind speed at all sun elevations below the mid-latitude noon condition.

© 1984 Optical Society of America

Full Article  |  PDF Article
More Like This
Factor analysis of multispectral radiances over coastal and open ocean water based on radiative transfer calculations

Juergen Fischer, Roland Doerffer, and Hartmut Grassl
Appl. Opt. 25(3) 448-456 (1986)

Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface

Zhonghai Jin, Thomas P. Charlock, Ken Rutledge, Knut Stamnes, and Yingjian Wang
Appl. Opt. 45(28) 7443-7455 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved