Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transformation of statistical characteristics of picosecond laser pulses by multiple-scattering media

Not Accessible

Your library or personal account may give you access

Abstract

Higher-order (up to eighth) temporal moments to characterize non-Gaussian picosecond laser pulses were measured in a laboratory-simulation experiment for laser communication through multiple-scattering media. A technique employing deconvolution of higher-order moments (taking into account the impulse response of the detector and sampling system) is described to determine the true moments from the observed sampling scope traces of the pulse shapes. Measuring the broadening of the original pulses (~20-ps pulse width) generated with a single spatial mode GaAlAs laser diode by current modulation gain switching method, the temporal moments of order n = 2–8 were analyzed as a function of optical depth τ of the multiple-scattering medium (consisting of latex spheres suspended in water) (5.5 ≤ τ ≤ 10.31) and receiver’s field of views (FOV) ranging from 0.503 to 2.1°. Higher-order temporal moments curves are presented as a function of both optical depth and FOV showing the general trend of the moments initially to rise quickly and finally to attain saturation or limiting values. A simple empirical relationship of a polynomial function of the order of 3 is obtained to express the broadened pulse width (n = 2) in the range of optical depth and FOV considered here. The results described in this paper clearly indicate the significance of the contribution of the longer part of the non-Gaussian tails of the broadened pulses to practical design problems in all-weather atmospheric optical communications.

© 1986 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiple scattering of optical pulses in scale model clouds

Richard A. Elliott
Appl. Opt. 22(17) 2670-2681 (1983)

Separation and analysis of forward scattered power in laboratory measurements of light beam transmittance through a turbid medium

E. Battistelli, P. Bruscaglioni, A. Ismaelli, L. Lo Porto, and G. Zaccanti
Appl. Opt. 25(3) 420-430 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved