Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Retrieval of water cloud properties from carbon dioxide lidar soundings

Not Accessible

Your library or personal account may give you access

Abstract

Lidar backscatter signatures from model water clouds are calculated for CO2 lidar wavelengths (9.2—10.8 μm) using Mie theory. The lidar isotropic mass backscatter coefficient is found to be quite variable both with cloud model and with wavelength, with values ranging from ~90 to 15 g−1 cm2 at 9.2-μm wavelength and from 25 to 5 g−1 cm2 at 11 μm, there being a general decrease in values with increasing wavelength. The cloud isotropic backscatter-to-extinction ratio similarly varies with both wavelength and cloud model between extreme values of 0.14 and 0.008. It is found that the cloud mass extinction coefficient has a value at any wavelength which is independent of cloud model droplet size distribution to within ~10% accuracy, in agreement with other studies. The value of this quantity varies from 1929 g−1 cm2 at 9.2 μm to 1258 g−1 cm2 at 11.0 μm. If the isotropic volume backscatter coefficient and the isotropic backscatter-to-extinction ratio are measured by lidar, then using the above characteristics of mass extinction coefficient the cloud liquid water content can be measured at any wavelength to an accuracy of ~20% when the cloud optical depth is between 0 and 0.5, with an increasing error with increasing cloud optical depth. Using the relationship between cloud droplet mode radius and backscatter-to-extinction ratio, the mode radius can be determined to ~10% accuracy. Multiple scattering in the backscattered beam for the case of absorbing water clouds at CO2 wavelengths is also considered. The cloud depth to which accurate information can be retrieved in typical water clouds varies from ~80 to 250 m depending on the wavelength and the cloud model, although some information is available to depths of 500 m in some clouds.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Determination of cloud microphysical properties by laser backscattering and extinction measurements

R. H. Dubinsky, A. I. Carswell, and S. R. Pal
Appl. Opt. 24(11) 1614-1622 (1985)

Raman lidar observations of cloud liquid water

Vincenzo Rizi, Marco Iarlori, Giuseppe Rocci, and Guido Visconti
Appl. Opt. 43(35) 6440-6453 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved