Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Single droplet size, velocity, and optical characteristics by the polarization properties of scattered light

Not Accessible

Your library or personal account may give you access

Abstract

A method is described for obtaining size, velocity, and optical properties of transparent spherical droplets employing the polarization characteristics of scattered light. A preliminary analysis of the Lorenz-Mie solution, in comparison with geometrical optics, points out the importance of surface waves in the side scattering region between θ = 85° and θ = 120°. Here the horizontal component of scattered light due to surface waves prevails over that due to external reflection for droplets smaller than 100 μm and the polarization ratio γ = CHH/CVV can be employed for determining the particle size. A dual-beam system is made of two equal intensity circularly counterotating polarized laser beams which generate a polarized fringe pattern in the interference volume. The polarization ratio of scattered light, at a fixed scattering angle θ, and velocity is obtained by analysis of the bursts produced by individual droplets. The method was tested by determining the size and velocity distribution functions of droplet arrays produced by a Berglund-Liu atomizer operated either in monodisperse or in bidisperse regimes. The angular pattern of the polarization ratio was determined on calibrated streams of transparent droplets with different refractive indices, and the influence of this parameter on the role of surface waves in different angular scattering regions is discussed.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature and size of single transparent droplets by light scattering in the forward and rainbow regions

P. Massoli, F. Beretta, A. D’Alessio, and M. Lazzaro
Appl. Opt. 32(18) 3295-3301 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved