Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering by two spheres in contact: comparisons between discrete-dipole approximation and modal analysis

Not Accessible

Your library or personal account may give you access

Abstract

This paper applies two different techniques to the problem of scattering by two spheres in contact:modal analysis, which is an exact method, and the discrete-dipole approximation (DDA). Good agreement is obtained, which further demonstrates the utility of the DDA to scattering problems for irregular particles. The choice of the DDA polarizability scheme is discussed in detail. We show that the lattice dispersion relation provides excellent improvement over the Clausius–Mossoti polarizability parameterization.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Discrete-Dipole Approximation For Scattering Calculations

Bruce T. Draine and Piotr J. Flatau
J. Opt. Soc. Am. A 11(4) 1491-1499 (1994)

Internal and scattered electric fields in the discrete dipole approximation

Stephen D. Druger and Burt V. Bronk
J. Opt. Soc. Am. B 16(12) 2239-2246 (1999)

Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations

Chao Liu, Lei Bi, R. Lee Panetta, Ping Yang, and Maxim A. Yurkin
Opt. Express 20(15) 16763-16776 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.