Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence

Not Accessible

Your library or personal account may give you access

Abstract

Photofragmentation (PF) and subsequent nitric oxide (NO) laser-induced fluorescence (LIF) is being developed to measure the concentration of energetic materials (EM’s) in soil and other media. Laser radiation near 226 nm photodissociates gas-phase EM to NO2, which predissociates into NO that gives an intense luminescence. The EM concentration is inferred from the intensity of the NO fluorescence. We have studied the factors that affect the PF–LIF signal intensity, including the effect of buffer gas on the LIF spectrum of pure NO, the effect of 2,4,6-trinitrotoluene (TNT) pressure on the PF–LIF spectrum, the effect of buffer-gas pressure on the PF–LIF signal intensity of pure TNT, and the effect of temperature on the PF–LIF spectra of pure TNT and of TNT in simulated soil. Heating of the TNT sample above 343 K was found to increase the magnitude of the PF-LIF signal intensity significantly, but also was found to cause physical and chemical changes in the TNT sample. The effects of heating and evacuating on the TNT sample were investigated. TNT concentration calibration curves were obtained for TNT in simulated soil mixtures. The limit of detection of TNT in soil was estimated to be 40 parts in 109.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater

Gary M. Boudreaux, Tracy S. Miller, Amanda J. Kunefke, Jagdish P. Singh, Fang-Yu Yueh, and David L. Monts
Appl. Opt. 38(9) 1411-1417 (1999)

Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials

Vaidhianat Swayambunathan, Gurbax Singh, and Rosario C. Sausa
Appl. Opt. 38(30) 6447-6454 (1999)

Tunable infrared laser detection of pyrolysis products of explosives in soils

J. Wormhoudt, J. H. Shorter, J. B. McManus, P. L. Kebabian, M. S. Zahniser, W. M. Davis, E. R. Cespedes, and C. E. Kolb
Appl. Opt. 35(21) 3992-3997 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.