Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photometric immersion refractometry: a method for determining the refractive index of marine microbial particles from beam attenuation

Not Accessible

Your library or personal account may give you access

Abstract

Photometric immersion refractometry is a technique for determining the refractive index of particulate material. In this technique, the attenuation of light by a suspension of particles is measured as a function of the refractive index of the immersion medium. A minimum attenuation occurs at the refractive index of the medium equal to that of the particles. This technique can serve as a benchmark method for the refractive index determination because it is independent of assumptions invoked by other techniques, such as those based on the inversion of the spectral attenuation data. We present a rigorous model of the photometric immersion refractometry based on the anomalous diffraction approximation for the attenuation efficiency of particles. This model permits one to determine the average value of the real part of the refractive index of the particles, its variance, and the average imaginary part of the refractive index of the particles. In addition, the fourth moment of the particle size distribution can be determined if the concentration and shape of the particles are known. We analyze the sensitivity of this model to experimental errors and discuss the applicability of photometric immersion refractometry to marine microbial particles. We also present experimental results of this technique as applied to heterotrophic marine bacteria. The results indicate that the refractive index of these bacteria was narrowly distributed about the average value of 1.3886.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates

Rebecca E. Green, Heidi M. Sosik, Robert J. Olson, and Michele D. DuRand
Appl. Opt. 42(3) 526-541 (2003)

Evaluation of a flow cytometry method to determine size and real refractive index distributions in natural marine particle populations

Jacopo Agagliate, Rüdiger Röttgers, Michael S. Twardowski, and David McKee
Appl. Opt. 57(7) 1705-1716 (2018)

Application of dynamic light scattering to the study of small marine particles

Dariusz Stramski and Marián Sedlák
Appl. Opt. 33(21) 4825-4834 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved