Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs

Not Accessible

Your library or personal account may give you access

Abstract

The shielding effectiveness of laser-induced breakdown from focused, visible laser pulses from 5 ns to 125 fs is determined from measurements of transmission of energy through the focal volume. The shielding efficiency decreases as a function of pulse duration from 5 ns to 300 fs and increases from 300 fs to 125 fs. The results are compared with past studies at similar pulse durations. The results of the measurements support laser-induced breakdown models and may lead to an optimization of laser-induced breakdown in ophthalmic surgery by reduction of collateral effects.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Intraocular laser surgical probe for membrane disruption by laser-induced breakdown

Daniel X. Hammer, Gary D. Noojin, Robert J. Thomas, Candace E. Clary, Benjamin A. Rockwell, Cynthia A. Toth, and W. P. Roach
Appl. Opt. 36(7) 1684-1693 (1997)

Minimally disruptive laser-induced breakdown in water

E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur
Opt. Lett. 22(23) 1817-1819 (1997)

Experimental investigation on multiple breakdown in water induced by focused nanosecond laser

Lei Fu, Siqi Wang, Jing Xin, Shijia Wang, Cuiping Yao, Zhenxi Zhang, and Jing Wang
Opt. Express 26(22) 28560-28575 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.