Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nonlinear least-squares and phase-shifting quantization methods for diffractive optical element design

Not Accessible

Your library or personal account may give you access

Abstract

A new, to our knowledge, design method for diffractive optical elements (DOE’s) is described and compared with existing methods. The technique applies a nonlinear least-squares algorithm to design two-dimensional pure phase DOE’s that reconstruct a desired diffraction pattern with high uniformity, efficiency, and signal-to-noise ratio. The technique also uses a phase-shifting quantization procedure that greatly reduces the quantization error for DOE’s to a minimum level. In this paper, we compare simulated reconstruction results of DOE’s designed by use of these methods with results obtained by the commonly used two-stage iterative Fourier transform design algorithm of Wyrowski. [J. Opt. Soc. Am. A 7, 961, (1990)].

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Diffractive optical element design with memory-matrix-based identification methodology

Dhawat E. Pansatiankul and Alexander A. Sawchuk
Appl. Opt. 39(32) 5921-5928 (2000)

Design of diffractive optical elements with optimization of the signal-to-noise ratio and without a dummy area

Jeng-Feng Lin and Alexander A. Sawchuk
Appl. Opt. 36(14) 3155-3164 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved