Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry

Not Accessible

Your library or personal account may give you access

Abstract

Most instruments used to measure tissue optical properties noninvasively employ data-analysis algorithms that rely on the simplifying assumption that the tissue is semi-infinite and homogeneous. The influence of a layered tissue architecture on the determination of the scattering and absorption coefficients has been investigated in this study. Reflectance as a function of distance from a point source for a two-layered tissue architecture that simulates skin overlying fat was calculated by using a Monte Carlo code. These data were analyzed by using a diffusion theory model for a homogeneous semi-infinite medium to calculate the scatter and absorption coefficients. Depending on the algorithm and the radial distance, the estimated tissue optical properties were different from those of either layer, and under some circumstances, physically impossible. In addition, the sensitivity and cross talk of the estimated optical properties to changes in input optical properties were calculated for different layered geometries. For typical optical properties of skin, the sensitivity to changes in optical properties is highly dependent on the layered architecture, the measurement distance, and the fitting algorithm. Furthermore, a change in the input absorption coefficient may result in an apparent change in the measured scatter coefficient, and a change in the input scatter coefficient may result in an apparent change in the measured absorption coefficient.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Investigation of two-layered turbid media with time-resolved reflectance

Alwin Kienle, Thomas Glanzmann, Georges Wagnières, and Hubert van den Bergh
Appl. Opt. 37(28) 6852-6862 (1998)

Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media

Maria Angela Franceschini, Sergio Fantini, L. Adelina Paunescu, John S. Maier, and Enrico Gratton
Appl. Opt. 37(31) 7447-7458 (1998)

Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium

George Alexandrakis, Thomas J. Farrell, and Michael S. Patterson
Appl. Opt. 37(31) 7401-7409 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved