Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies

Not Accessible

Your library or personal account may give you access

Abstract

A full multiple-scattering algorithm for inverting profiles of the upwelling and downwelling irradiances to yield profiles of the absorption and backscattering coefficients in a vertically stratified water body is described and tested with simulated data. The algorithm does not require knowledge of the scattering phase function of the medium. The results are better the closer the phase function assumed in the retrievals is to the true phase function, although excellent retrievals of the absorption coefficient can still be obtained with an inaccurate phase function. Simulations show that the algorithm is capable of determining the vertical structure of a stratified water body and usually provides the absorption coefficient profile with an error ≲2% and the backscattering coefficient profile with an error ≲10%, as long as the spacing between pseudodata samples is sufficiently small that the necessary derivatives of the irradiances can be accurately computed. The performance is only slightly degraded when the upwelling radiance (nadir viewing) is substituted for the upwelling irradiance.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved