Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nonlinear optical beam propagation for optical limiting

Not Accessible

Your library or personal account may give you access

Abstract

We implement numerical modeling of high-energy laser-pulse propagation through bulk nonlinear optical materials using focused beams. An executable program with a graphical user interface is made available to researchers for modeling the propagation of beams through materials much thicker than the diffraction length (up to 103 times longer). Ultrafast nonlinearities of the bound-electronic Kerr effect and two-photon absorption as well as time-dependent excited-state and thermal nonlinearities are taken into account. The hydrodynamic equations describing the rarefaction of the medium that is due to heating are solved to determine thermal index changes for nanosecond laser pulses. We also show how this effect can be simplified in some cases by an approximation that assumes instantaneous expansion (so-called thermal lensing approximation). Comparisons of numerical results with several Z-scan, optical limiting and beam distortion experiments are presented. Possible application to optimization of a passive optical limiter design is discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Numerical modeling of thermal refraction in liquids in the transient regime

Dmitriy I. Kovsh, David J. Hagan, and Eric W. Van Stryland
Opt. Express 4(8) 315-327 (1999)

Optimization of optical limiting devices based on excited-state absorption

Tiejun Xia, David J. Hagan, Arthur Dogariu, Ali A. Said, and Eric W. Van Stryland
Appl. Opt. 36(18) 4110-4122 (1997)

Beam propagation and optical power limiting with nonlinear media

J. A. Hermann
J. Opt. Soc. Am. B 1(5) 729-736 (1984)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved