Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Far-field propagation of an off-axis Gaussian wave

Not Accessible

Your library or personal account may give you access

Abstract

Based on a far-field asymptotic solution of the Helmholtz equation a vector theory to describe the propagation of an off-axis Gaussian wave is developed, the accurate formulas represented in terms of elementary functions are derived, and the propagation properties such as wave spot size and divergence angle are discussed in detail. The applicable range of scalar theory is also presented. A relative error criterion of optical intensity is given by ∊ = sin2 α.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Far-field radiation of planar Gaussian sources and comparison with solutions based on the parabolic approximation

Xiaodong Zeng, Changhong Liang, and Yuying An
Appl. Opt. 36(10) 2042-2047 (1997)

Far-field scattering of a non-Gaussian off-axis axisymmetric laser beam by a spherical particle

James A. Lock and Joseph T. Hodges
Appl. Opt. 35(33) 6605-6616 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved