Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effect of atmospheric radiance errors in radiometric sea-surface skin temperature measurements

Not Accessible

Your library or personal account may give you access

Abstract

Errors in measurements of sea-surface skin temperature (SSST) caused by inappropriate measurements of sky radiance are discussed; both model simulations and in situ data obtained in the Atlantic Ocean are used. These errors are typically caused by incorrect radiometer view geometry (pointing), temporal mismatches between the sea surface and atmospheric views, and the effect of wind on the sea surface. For clear-sky, overcast, or high-humidity atmospheric conditions, SSST is relatively insensitive (<0.1 K) to sky-pointing errors of ±10° and to temporal mismatches between the sea and sky views. In mixed-cloud conditions, SSST errors greater than ±0.25 K are possible as a result either of poor radiometer pointing or of a temporal mismatch between the sea and sky views. Sea-surface emissivity also changes with sea view pointing angle. Sea view pointing errors should remain below 5° for SSST errors of <0.1 K. We conclude that the clear-sky requirement of satellite infrared SSST observations means that sky-pointing errors are small when one is obtaining in situ SSST validation data at zenith angles of <40°. At zenith angles greater than this, large errors are possible in high-wind-speed conditions. We recommend that high-resolution inclinometer measurements always be used, together with regular alternating sea and sky views, and that the temporal mismatch between sea and sky views be as small as possible. These results have important implications for the development of operational autonomous instruments for determining SSST for the long-term validation of satellite SSST.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Estimation of the remote-sensing reflectance from above-surface measurements

Curtis D. Mobley
Appl. Opt. 38(36) 7442-7455 (1999)

Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability

Dierdre A. Toole, David A. Siegel, David W. Menzies, Michael J. Neumann, and Raymond C. Smith
Appl. Opt. 39(3) 456-469 (2000)

Measurements of the infrared emissivity of a wind-roughened sea surface

Jennifer A. Hanafin and Peter J. Minnett
Appl. Opt. 44(3) 398-411 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved