Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance

Not Accessible

Your library or personal account may give you access

Abstract

Noncontact, frequency-domain measurements of diffusely reflected light are used to quantify optical properties of two-layer tissuelike turbid media. The irradiating source is a sinusoidal intensity-modulated plane wave, with modulation frequencies ranging from 10 to 1500 MHz. Frequency-dependent phase and amplitude of diffusely reflected photon density waves are simultaneously fitted to a diffusion-based two-layer model to quantify absorption (μa) and reduced scattering (μs′) parameters of each layer as well as the upper-layer thickness (l). Study results indicate that the optical properties of two-layer media can be determined with a percent accuracy of the order of ±9% and ±5% for μa and μs′, respectively. The accuracy of upper-layer thickness (l) estimation is as good as ±6% when optical properties of upper and lower layers are known. Optical property and layer thickness prediction accuracy degrade significantly when more than three free parameters are extracted from data fits. Problems with convergence are encountered when all five free parameters (μa and μs′ of upper and lower layers and thickness l) must be deduced.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model

George Alexandrakis, David R. Busch, Gregory W. Faris, and Michael S. Patterson
Appl. Opt. 40(22) 3810-3821 (2001)

Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain

George Alexandrakis, Thomas J. Farrell, and Michael S. Patterson
Appl. Opt. 39(13) 2235-2244 (2000)

Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media

Andrew J. Berger, Vasan Venugopalan, Anthony J. Durkin, Tuan Pham, and Bruce J. Tromberg
Appl. Opt. 39(10) 1659-1667 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved