Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Origin of the hook effect in extrinsic photoconductors

Not Accessible

Your library or personal account may give you access

Abstract

The response of extrinsic photoconductors to a step change in incident photon flux has long been known to exhibit a sharp transient feature, particularly at higher signal levels, known as the hook effect. We demonstrate experimentally and theoretically that the hook effect can be due to reduced illumination adjacent to the injecting contact. This nonuniformity can be produced by the transverse illumination of the detector that is common for far-infrared Ge:Ga devices. The hook effect has been demonstrated to be either present or absent in the same Ge:Ga photoconductor, at comparable signal size, depending on the nature of the contact illumination. Numerical finite-difference calculations of the transient response support this explanation and produce features that replicate the experimental results.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Transient behavior of infrared photoconductors: application of a numerical model

Nancy M. Haegel, Jose C. Simoes, A. Michael White, and Jeffrey W. Beeman
Appl. Opt. 38(10) 1910-1919 (1999)

Transient response in doped germanium photoconductors under very low background operation

S. E. Church, M. C. Price, N. M. Haegel, M. J. Griffin, and P. A. R. Ade
Appl. Opt. 35(10) 1597-1604 (1996)

Three-element stressed Ge:Ga photoconductor array for the infrared telescope in space

N. Hiromoto, T. Itabe, H. Shibai, H. Matsuhara, T. Nakagawa, and H. Okuda
Appl. Opt. 31(4) 460-465 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved