Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Absorption line shift with temperature and pressure: impact on laser-diode-based H2O sensing at 1.393 µm

Not Accessible

Your library or personal account may give you access

Abstract

High-resolution absorption measurements of the H2O line in the v1 + v3 band at 1.3928 µm were made in the temperature range of 296–1100 K by use of an InGaAsP distributed-feedback laser diode operating at 1.39 µm. Spectral line shift, line strength, and N2 broadening on the water-vapor line and their impact on the accuracy of optical-absorption-based gas sensing have been investigated. The results obtained were compared with values obtained from the HITRAN database and values reported in the literature, facilitating H2O sensing in a nonstandard temperature and pressure environment.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Shock-tube study of high-pressure H2O spectroscopy

Venu Nagali, John T. Herbon, David C. Horning, David F. Davidson, and Ronald K. Hanson
Appl. Opt. 38(33) 6942-6950 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.