Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

SIMBAD: a field radiometer for satellite ocean-color validation

Not Accessible

Your library or personal account may give you access

Abstract

A hand-held radiometer, called SIMBAD, has been designed and built specifically for evaluating satellite-derived ocean color. It provides information on the basic ocean-color variables, namely aerosol optical thickness and marine reflectance, in five spectral bands centered at 443, 490, 560, 670, and 870 nm. Aerosol optical thickness is obtained by viewing the Sun disk and measuring the direct atmospheric transmittance. Marine reflectance is obtained by viewing the ocean surface and measuring the upwelling radiance through a vertical polarizer in a geometry that minimizes glitter and reflected sky radiation, i.e., at 45° from nadir (near the Brewster angle) and at 135° in azimuth from the Sun’s principal plane. Relative inaccuracy on marine reflectance, established theoretically, is approximately 6% at 443 and 490 nm, 8% at 560 nm, and 23% at 670 nm for case 1 waters containing 0.1 mg m-3 of chlorophyll a. Measurements by SIMBAD and other instruments during the Second Aerosol Characterization Experiment, the Aerosols-99 Experiment, and the California Cooperative Oceanic Fisheries Investigations cruises agree within uncertainties. The radiometer is compact, light, and easy to operate at sea. The measurement protocol is simple, allowing en route measurements from ships of opportunity (research vessels and merchant ships) traveling the world’s oceans.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Sky-radiance measurements for ocean-color calibration-validation

Richard Santer and Nadège Martiny
Appl. Opt. 42(6) 896-907 (2003)

Sources and assumptions for the vicarious calibration of ocean color satellite observations

Sean W. Bailey, Stanford B. Hooker, David Antoine, Bryan A. Franz, and P. Jeremy Werdell
Appl. Opt. 47(12) 2035-2045 (2008)

Importance and estimation of aerosol vertical structure in satellite ocean-color remote sensing

Lucile Duforêt, Robert Frouin, and Philippe Dubuisson
Appl. Opt. 46(7) 1107-1119 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.