Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical fiber probe for biomedical Raman spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

In vitro experiments have demonstrated the ability of Raman spectroscopy to diagnose a wide variety of diseases. Recent in vivo investigations performed with optical fiber probes were promising but generally limited to easily accessible organs, often requiring relatively long collection times. We have implemented an optical design strategy to utilize system throughput fully by characterizing the Raman distribution from tissue. This scheme optimizes collection efficiency, minimizes noise, and has resulted in small-diameter, highly efficient Raman probes that are capable of collecting high-quality data in 1 s. Performance has been tested through simulations and experiments with tissue models and several in vitro tissue types, demonstrating that this new design can advance Raman spectroscopy as a clinically practical technique.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Micro-optical fiber probe for use in an intravascular Raman endoscope

Yuichi Komachi, Hidetoshi Sato, Katsuo Aizawa, and Hideo Tashiro
Appl. Opt. 44(22) 4722-4732 (2005)

Improvement and analysis of a micro Raman probe

Yuichi Komachi, Takashi Katagiri, Hidetoshi Sato, and Hideo Tashiro
Appl. Opt. 48(9) 1683-1696 (2009)

Fiber-optic probes with improved excitation and collection efficiency for deep-UV Raman and resonance Raman spectroscopy

L. Shane Greek, H. Georg Schulze, Michael W. Blades, Charles A. Haynes, Karl-Friedrich Klein, and Robin F. B. Turner
Appl. Opt. 37(1) 170-180 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved