Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method

Not Accessible

Your library or personal account may give you access

Abstract

A dispersive body-of-revolution finite-difference time-domain method is developed to simulate metal-cladded near-field scanning optical microscope (NSOM) probes. Two types of NSOM probe (aperture and plasmon NSOM probes) are analyzed and designed with this fast method. The influence of the metal-cladding thickness and the excitation mode on the performance of the NSOM probes is studied. We introduce a new scheme of illumination-mode NSOM by employing the plasmon NSOM probe with the TM01 mode excitation. Such a NSOM probe is designed, and we demonstrate its advantages over the conventional aperture NSOM probe by scanning across a metallic object.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators

S. Mirzaei-Ghormish, M. Shahabadi, and D. E. Smalley
Opt. Express 30(20) 36332-36342 (2022)

Offset-apertured near-field scanning optical microscope probes

M. C. Quong and A. Y. Elezzabi
Opt. Express 15(16) 10163-10174 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved