Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-color mixing for classifying agricultural products for safety and quality

Not Accessible

Your library or personal account may give you access

Abstract

We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454  and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504  and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-color mixing for classifying agricultural products for safety and quality

Fujian Ding, Yud-Ren Chen, Kuanglin Chao, and Moon S. Kim
Appl. Opt. 45(15) 3516-3526 (2006)

Two-wave-band color-mixing binoculars for the detection of wholesome and unwholesome chicken carcasses: a simulation

Fujian Ding, Yud-Ren Chen, and Kuanglin Chao
Appl. Opt. 44(26) 5454-5462 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.