Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diffuse optical tomography guided quantitative fluorescence molecular tomography

Not Accessible

Your library or personal account may give you access

Abstract

We describe a method that combines fluorescence molecular tomography (FMT) with diffuse optical tomography (DOT), which allows us to study the impact of heterogeneous optical property distribution on FMT, an issue that has not been systemically studied. Both numerical simulations and phantom experiments were performed based on our finite-element reconstruction algorithms. The experiments were conducted using a noncontact optical fiber free, multiangle transmission system. In both the simulations and experiments, a fluorescent target was embedded in an optically heterogeneous background medium. The simulation results clearly suggest the necessity of considering the absorption coefficient (μa) and reduced scattering coefficient (μs) distributions for quantitatively accurate FMT, especially in terms of the accuracy of reconstructed fluorophore absorption coefficient (μaxm). Subsequent phantom experiments with an indocyanine green (ICG)-containing target confirm the simulation findings. In addition, we performed a series of phantom experiments with low ICG concentration (0.1, 0.2, 0.4, 0.6 and 1.0μM) in the target to systematically evaluate the quantitative accuracy of our FMT approach. The results indicate that, with the knowledge of optical property distribution, the accuracy of the recovered fluorophore concentration is improved significantly over that without such a priori information. In particular absolute value of μaxm from our DOT guided FMT are quantitatively consistent with that obtained using spectroscopic methods.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhancement of fluorescence molecular tomography with structural-prior-based diffuse optical tomography: combating optical background uncertainty

Linhui Wu, Huijuan Zhao, Xin Wang, Xi Yi, Weiting Chen, and Feng Gao
Appl. Opt. 53(30) 6970-6982 (2014)

Quantitative bioluminescence tomography guided by diffuse optical tomography

Qizhi Zhang, Lu Yin, Yiyong Tan, Zhen Yuan, and Huabei Jiang
Opt. Express 16(3) 1481-1486 (2008)

Quantitative fluorescence tomography with functional and structural a priori information

Yuting Lin, Han Yan, Orhan Nalcioglu, and Gultekin Gulsen
Appl. Opt. 48(7) 1328-1336 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved