Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Airborne High Spectral Resolution Lidar for profiling aerosol optical properties

Not Accessible

Your library or personal account may give you access

Abstract

A compact, highly robust airborne High Spectral Resolution Lidar (HSRL) that provides measurements of aerosol backscatter and extinction coefficients and aerosol depolarization at two wavelengths has been developed, tested, and deployed on nine field experiments (over 650 flight hours). A unique and advantageous design element of the HSRL system is the ability to radiometrically calibrate the instrument internally, eliminating any reliance on vicarious calibration from atmospheric targets for which aerosol loading must be estimated. This paper discusses the design of the airborne HSRL, the internal calibration and accuracy of the instrument, data products produced, and observations and calibration data from the first two field missions: the Joint Intercontinental Chemical Transport Experiment—Phase B (INTEX-B)/Megacity Aerosol Experiment—Mexico City (MAX-Mex)/Megacities Impacts on Regional and Global Environment (MILAGRO) field mission (hereafter MILAGRO) and the Gulf of Mexico Atmospheric Composition and Climate Study/Texas Air Quality Study II (hereafter GoMACCS/TexAQS II).

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients

Michael Esselborn, Martin Wirth, Andreas Fix, Matthias Tesche, and Gerhard Ehret
Appl. Opt. 47(3) 346-358 (2008)

Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar

Bing-Yi Liu, Michael Esselborn, Martin Wirth, Andreas Fix, De-Cang Bi, and Gerhard Ehret
Appl. Opt. 48(27) 5143-5154 (2009)

Validation of an airborne high spectral resolution Lidar and its measurement for aerosol optical properties over Qinhuangdao, China

Qin Wang, Lingbing Bu, Li Tian, Junjie Xu, Shouzheng Zhu, and Jiqiao Liu
Opt. Express 28(17) 24471-24488 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.