Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere–ocean systems. II. The hybrid matrix operator—Monte Carlo method

Not Accessible

Your library or personal account may give you access

Abstract

A hybrid method is developed to solve the vector radiative transfer equation (VRTE) in a three- dimensional atmosphere–ocean system (AOS). The system is divided into three parts: the atmosphere, the dielectric interface, and the ocean. The Monte Carlo method is employed to calculate the impulse response functions (Green functions) for the atmosphere and ocean. The impulse response function of the dielectric interface is calculated by the Fresnel formulas. The matrix operator method is then used to couple these impulse response functions to obtain the vector radiation field for the AOS. The primary advantage of this hybrid method is that it solves the VRTE efficiently in an AOS with different dielectric interfaces while keeping the same atmospheric and oceanic conditions. For the first time, we present the downward radiance field in an ocean with a sinusoidal ocean wave.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarized radiance fields under a dynamic ocean surface: a three-dimensional radiative transfer solution

Yu You, Peng-Wang Zhai, George W. Kattawar, and Ping Yang
Appl. Opt. 48(16) 3019-3029 (2009)

A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method

Peng-Wang Zhai, Yongxiang Hu, Charles R. Trepte, and Patricia L. Lucker
Opt. Express 17(4) 2057-2079 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved