Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere

Not Accessible

Your library or personal account may give you access

Abstract

The propagation of a partially coherent rectangular flat-topped laser array in a turbulent atmosphere is studied. An analytical expression for the average intensity distribution at the receiving plane is obtained based on an extended Huygens–Fresnel principle. The effect of correlation length, intensity of turbulence, laser numbers, and beam orders on the beam quality in a target plane is studied by numerical examples.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Radial phased-locked partially coherent flat-topped vortex beam array in non-Kolmogorov medium

Huilong Liu, Yanfei Lü, Jing Xia, Dong Chen, Wei He, and Xiaoyun Pu
Opt. Express 24(17) 19695-19712 (2016)

Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence

Masoud Yousefi, Fatemeh Dabbagh Kashani, Shole Golmohammady, and Ahmad Mashal
J. Opt. Soc. Am. A 34(12) 2126-2137 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved