Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Detailed performance modeling of a pulsed high-power single-frequency Ti:sapphire laser

Not Accessible

Your library or personal account may give you access

Abstract

Differential absorption lidar (DIAL) is a unique technique for profiling water vapor from the ground up to the lower stratosphere. For accurate measurements, the DIAL laser transmitter has to meet stringent requirements. These include high average power (up to 10W) and high single-shot pulse energy, a spectral purity >99.9%, a frequency instability <60MHzrms, and narrow spectral bandwidth (single-mode, <160MHz). We describe extensive modeling efforts to optimize the resonator design of a Ti:sapphire ring laser in these respects. The simulations were made for the wavelength range of 820nm, which is optimum for ground-based observations, and for both stable and unstable resonator configurations. The simulator consists of four modules: (1) a thermal module for determining the thermal lensing of the Brewster-cut Ti:sapphire crystal collinear pumped from both ends with a high-power, frequency-doubled Nd:YAG laser; (2) a module for calculating the in-cavity beam propagations for stable and unstable resonators; (3) a performance module for simulating the pumping efficiency and the laser pulse energy; and (4) a spectral module for simulating injection seeding and the spectral properties of the laser radiation including spectral impurity. Both a stable and an unstable Ti:sapphire laser resonator were designed for delivering an average power of 10W at a pulse repetition frequency of 250Hz with a pulse length of approximately 40ns, satisfying all spectral requirements. Although the unstable resonator design is more complex to align and has a higher lasing threshold, it yields similar efficiency and higher spectral purity at higher overall mode volume, which is promising for long-term routine operations.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
High-power Ti:sapphire laser at 820 nm for scanning ground-based water–vapor differential absorption lidar

Gerd Wagner, Andreas Behrendt, Volker Wulfmeyer, Florian Späth, and Max Schiller
Appl. Opt. 52(11) 2454-2469 (2013)

Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power

Gerd Wagner, Max Shiler, and Volker Wulfmeyer
Opt. Express 13(20) 8045-8055 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.