Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laminar Flow Burner System with Infrared Heated Spray Chamber and Condenser

Not Accessible

Your library or personal account may give you access

Abstract

A laminar flow burner is described that provides several advantages in atomic absorption flame photometry. Included in its design is a heated spray chamber followed by a condensing system. This combination improves the concentration level of the analyte in the flame and keeps solvent concentration low. Therefore, sensitivities are significantly improved for most elements relative to cold chamber burners. The burner also contains several safety features. These various design features are discussed in detail, and performance data are given on (a) signal size, (b) signal-to-noise ratio, (c) linearity, (d) working range, (e) precision, and (g) accuracy.

© 1968 Optical Society of America

Full Article  |  PDF Article
More Like This
A Heated Chamber Burner for Atomic Absorption Spectroscopy

A. A. Venghiattis
Appl. Opt. 7(7) 1313-1316 (1968)

Determination of Phosphorus and Sulfur in Fuel Rich Air–Hydrogen Flames

Augusta Syty and John A. Dean
Appl. Opt. 7(7) 1331-1336 (1968)

Nitrous Oxide Supported Flames for Atomic Absorption Spectroscopy

L. R. P. Butler and Anne Fulton
Appl. Opt. 7(10) 2131-2137 (1968)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved