Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 45,
  • Issue 9,
  • pp. 1444-1455
  • (1991)

Characterization of a Laser Plasma in a Pulsed Magnetic Field. Part II: Time-Resolved Emission and Absorption Studies

Not Accessible

Your library or personal account may give you access

Abstract

Temporally resolved emission and absorbance measurements were made in order to investigate the dynamic effects of a high-intensity pulsed magnetic field on a laser plasma. Temporally resolved emission studies were spatially resolved so that the effects of the magnetic field on plasma propagation both along and normal to the magnetic field could be probed. The mechanism of interaction of the field was investigated by observing plasma emission in spatial zones most likely to be influenced by an induced secondary current in the plasma. Spatial and temporal discrimination of emission enhancements indicated that radial compression was due to static magnetic field interactions with the laser plasma and that mild Joule-heating from the small induced current was most likely responsible for emission enhancements later in time. Spatially integrated absorbance measurements in the decaying plasma showed a decrease in absorbance as a result of the magnetic confinement; this is attributed to an increased rate of condensation of the atoms in the vapor cloud produced by the pinched plasma. More efficient coupling of energy from the magnetic field to the plasma would require low-pressure operation in a controlled atmosphere and/or a pulsed magnetic field having a greater d<i>B</i>/d<i>t</i>.

PDF Article
More Like This
Optical emission enhancement of laser-produced copper plasma under a steady magnetic field

Yu Li, Changhong Hu, Hanzhuang Zhang, Zhankui Jiang, and Zhongshan Li
Appl. Opt. 48(4) B105-B110 (2009)

Diamagnetic cavitization of laser-produced barium plasma in transverse magnetic field

Makaraju Srinivasa Raju, R. K. Singh, Ajai Kumar, and Pramod Gopinath
Opt. Lett. 40(10) 2185-2188 (2015)

Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field

Virendra N. Rai, Awadhesh K. Rai, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 42(12) 2085-2093 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved