Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 51,
  • Issue 7,
  • pp. 1012-1016
  • (1997)

Rayleigh Scattering of Excimer Laser Light from Some Simple Molecules at 193 nm and 248 nm: The Effect of Polarization upon Imaging Diagnostics

Not Accessible

Your library or personal account may give you access

Abstract

Tunable excimer laser beams are increasingly used for imaging of combustion and/or flow systems. We (1) describe the need to use known polarization phenomena in interpreting diagnostics based on Rayleigh scattering (RS); (2) present relative RS cross sections for some important species at the most relevant wavelengths, 193 and 248 nm; and (3) measure the degree of linear polarization and the locking efficiency of the excimer beam, which are important diagnostic parameters that are otherwise difficult to obtain. Laser sheets, whose direction of linear polarization are adjustable, pass through gases. The Rayleigh light goes into intensified charge-coupled dervice (CCD) cameras. We report RS cross sections, normalized to those for N2, at 193 nm for H2, O2, H2O, CO2, and CH4, and at 248 nm for Ar, H2, O2, H2O, CO2, and CH4. Even when these normalized RS cross sections are used, the diagnostics can be very sensitive to the laser beam's polarization state. For example, for CO2, the normalized cross section changes by a factor of 4 with polarization. This usually unwanted sensitivity is greatest when an unmodified tunable excimer laser is used. The degree of polarization of the lasers, as well as their locking efficiency, is derived via RS from the spherical molecules Ar and CH4.

PDF Article
More Like This
Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications

Jeffrey A. Sutton and James F. Driscoll
Opt. Lett. 29(22) 2620-2622 (2004)

Application of tunable excimer lasers to combustion diagnostics: a review

Erhard W. Rothe and Peter Andresen
Appl. Opt. 36(18) 3971-4033 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.