Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 55,
  • Issue 4,
  • pp. 434-443
  • (2001)

Multivariate Calibration for the Determination of Analytes in Urine Using Mid-Infrared Attenuated Total Reflection Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

The reagent-free multicomponent analysis of components in urine using mid-infrared spectroscopy possesses many attractions. A population of 67 individual urine samples from children and adults, collected over 24 h, was analyzed for urea, creatinine, uric acid, glucose, total protein, phosphate, and sulfate by using clinical reference methodology. The urine pH value was potentiometrically measured by a glass electrode. Partial least-squares (PLS) calibration models were calculated over optimized, component-specific ranges from attenuated total reflection spectra of the urine samples measured by a micro-Circle cell. Apart from glucose and total protein, for which the spread in urine sample concentrations was too small, calibrations were successful for metabolites such as urea, creatinine, and uric acid. Additionally, concentrations of sulfate and phosphate anions, which show significant mid-infrared absorption bands, could also be quantified. The acid secreted with the urine influences the equilibrium between di- and monobasic phosphate in this biofluid, which is used as the spectroscopic basis for the pH assay presented here. The analytical performance of the reference methods is discussed with regard to evaluating the limitations of the spectroscopic assay. Additionally, aqueous solutions of individual urine components with a spread of concentrations similar to those found in native urine samples were analyzed by using PLS calibrations.

PDF Article
More Like This
Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood

Ronit Simhi, Yaron Gotshal, David Bunimovich, Ben-Ami Sela, and Abraham Katzir
Appl. Opt. 35(19) 3421-3425 (1996)

Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

Ming Li, Yong Du, Fusheng Zhao, Jianbo Zeng, Chandra Mohan, and Wei-Chuan Shih
Biomed. Opt. Express 6(3) 849-858 (2015)

Fiber-optic evanescent-wave spectroscopy and neural networks: application to chemical blood analysis

Osnat Eytan, Ben-Ami Sela, and Abraham Katzir
Appl. Opt. 39(19) 3357-3360 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved