Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 7,
  • pp. 852-858
  • (2002)

Laser-Induced Breakdown Spectroscopy for the On-Line Multielement Analysis of Highly Radioactive Glass Melt Simulants. Part II: Analyses of Molten Glass Samples

Not Accessible

Your library or personal account may give you access

Abstract

The paper presents the application of laser-induced breakdown spectroscopy (LIBS) for the on-line multielement analyses of glass melts in a vitrification process of high level liquid waste (HLLW). The third harmonic pulse of an Nd:YAG laser is used for the generation of plasma on the molten glass surface and the plasma emission is monitored by an echelle spectrometer with an intensified charge-coupled device (ICCD), which simultaneously covers the wavelength range from 200 to 780 nm. Twelve different reference HLLW glass melts with a complex composition of about 27 chemical elements are simulated on a laboratory scale, varying the HLLW component concentration. By real-time analyses of the reference glasses at 1200 °C, the analytical method is calibrated. A multivariate regression approach with partial least squares (PLS) is used for the data evaluation. The LIBS method thus calibrated is then applied for the multielement analysis of molten glass samples from the prototype vitrification plant under operation in our institute. The results underline that the LIBS method can be applied to a vitrification process for the on-line multielement analysis of highly radioactive glass melts.

PDF Article
More Like This
Glass-batch composition monitoring by laser-induced breakdown spectroscopy

Bansi Lal, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 44(18) 3668-3674 (2005)

Parametric study of pellets for elemental analysis with laser-induced breakdown spectroscopy

Bansi Lal, Hongbo Zheng, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 43(13) 2792-2797 (2004)

Laser-induced breakdown spectroscopy of molten aluminum alloy

Awadhesh K. Rai, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 42(12) 2078-2084 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.