Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 60,
  • Issue 9,
  • pp. 977-984
  • (2006)

Analysis of the Effect of Particle Size on Polymorphic Quantitation by Raman Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Raman spectroscopy has been widely used to monitor various aspects of the crystallization process. Although it has long been known that particle size can influence Raman signal, relatively little research has been conducted in this area, in particular for mixtures of organic materials. The aim of this study was to investigate the effect of particle size on quantification of polymorphic mixtures. Several sets of calibration samples containing different particle size fractions were prepared and Raman spectra were collected with different probes. Calibration models were built using both univariate and multivariate analysis. It was found that, for a single component system, Raman intensity decreased with increasing particle size. For mixtures, calibration models generated from the same particle size distribution as the sample yielded relatively good predictions of the actual sample composition. However, if the particle sizes of the calibration and unknown samples were different, prediction errors resulted. For extreme differences in particle sizes, prediction errors of up to 20% were observed. Prediction errors could be minimized by changing the sampling optics employed.

PDF Article
More Like This
Univariate and multivariate analyses of strontium and vanadium in soil by laser-induced breakdown spectroscopy

Cuiping Lu, Min Wang, Liusan Wang, Haiying Hu, and Rujing Wang
Appl. Opt. 58(27) 7510-7516 (2019)

Quantitative analysis of chromium in potatoes by laser-induced breakdown spectroscopy coupled with linear multivariate calibration

Tianbing Chen, Lin Huang, Mingyin Yao, Huiqin Hu, Caihong Wang, and Muhua Liu
Appl. Opt. 54(25) 7807-7812 (2015)

Simultaneous analysis of Cr and Pb in contaminated pork by laser-induced breakdown spectroscopy

Mingyin Yao, Gangfu Rao, Lin Huang, Muhua Liu, Hui Yang, Jinyin Chen, and Tianbing Chen
Appl. Opt. 56(29) 8148-8153 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved