Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 11,
  • Issue 5,
  • pp. 053003-
  • (2013)

Experimental study of Fourier transform spectrometer based on MEMS micro-mirror

Not Accessible

Your library or personal account may give you access

Abstract

We propose a new Fourier transform spectrometer based on programmable microelectromechanical systems (MEMS) micro-mirror and an improved Michelson interferometer. The principle of the spectrometer is theoretically analyzed. A signal acquisition unit and an experimental set-up are designed. The spectrum of the polychromatic light source is obtained at a slantwise reflector angle of 0.238°. The spectrum is analyzed by this system within the near infrared. The experimental results show that the spectral accuracy is less than 3 nm, and the signal-to-noise ratio (SNR) is 18 dB. The spectral resolution is less than 16 nm.

© 2013 Chinese Optics Letters

PDF Article
More Like This
Fourier transform infrared spectrometer based on an electrothermal MEMS mirror

Donglin Wang, Hongqiong Liu, Jicheng Zhang, Qiao Chen, Wei Wang, Xiaoyang Zhang, and Huikai Xie
Appl. Opt. 57(21) 5956-5961 (2018)

Autoregressive superresolution microelectromechanical systems Fourier transform spectrometer

Islam Samir, Yasser M. Sabry, Alaa Fathy, Amr O. Ghoname, Niveen Badra, and Diaa A. Khalil
Appl. Opt. 58(25) 6784-6790 (2019)

Data processing and performance evaluation of a tempo-spatially mixed modulation imaging Fourier transform spectrometer based on stepped micro-mirror

Baixuan Zhao, Jinguang Lv, Jun Ren, Yuxin Qin, Jin Tao, Jingqiu Liang, and Weibiao Wang
Opt. Express 28(5) 6320-6335 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved