Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 5,
  • Issue 4,
  • pp. 201-203
  • (2007)

Restoration of solar and star images with phase diversity-based blind deconvolution

Not Accessible

Your library or personal account may give you access

Abstract

The images recorded by a ground-based telescope are often degraded by atmospheric turbulence and the aberration of the optical system. Phase diversity-based blind deconvolution is an effective post-processing method that can be used to overcome the turbulence-induced degradation. The method uses an ensemble of short-exposure images obtained simultaneously from multiple cameras to jointly estimate the object and the wavefront distribution on pupil. Based on signal estimation theory and optimization theory, we derive the cost function and solve the large-scale optimization problem using a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method. We apply the method to the turbulence-degraded images generated with computer, the solar images acquired with the swedish vacuum solar telescope (SVST, 0.475 m) in La Palma and the star images collected with 1.2-m telescope in Yunnan Observatory. In order to avoid edge effect in the restoration of the solar images, a modified Hanning apodized window is adopted. The star image still can be restored when the defocus distance is measured inaccurately. The restored results demonstrate that the method is efficient for removing the effect of turbulence and reconstructing the point-like or extended objects.

© 2007 Chinese Optics Letters

PDF Article
More Like This
Co-phasing of the segmented mirror and image retrieval based on phase diversity using a modified algorithm

Dan Yue, Shuyan Xu, and Haitao Nie
Appl. Opt. 54(26) 7917-7924 (2015)

Segmentation-based multiframe blind deconvolution of solar images

Noriaki Miura and Naoshi Baba
J. Opt. Soc. Am. A 12(9) 1858-1866 (1995)

Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects

Charles L. Matson, Kathy Borelli, Stuart Jefferies, Charles C. Beckner, Jr., E. Keith Hege, and Michael Lloyd-Hart
Appl. Opt. 48(1) A75-A92 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved