Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 19,
  • Issue 12,
  • pp. 1918-
  • (2001)

Gamma and Proton Radiation Effects in Erbium-Doped Fiber Amplifiers: Active and Passive Measurements

Not Accessible

Your library or personal account may give you access

Abstract

Commercially available Er-doped fibers were irradiated with 5.6-and 28-MeV protons and 60Co gamma rays,up to levels of 50 krad. White-light transmission spectra under passive conditions (no pump or signal) were measured at several radiation levels for the six types of fibers that were tested. The spectra were used to evaluate the relative radiation sensitivity of the fibers and compare gamma versus proton-induced damage for two fiber types. The amount of radiation damage for the fibers was observed to scale inversely with the Ge concentration. Samples from three of the fiber types were configured as optical amplifiers using 980-nm and 1550-nm pump and input signals. In situ measurements of the gain, noise figure, and amplified spontaneous emission (ASE) were made as a function of pump power at several levels of radiation. A computer code,based on a conventional Er-doped fiber amplifier (EDFA) model, was written to simulate performance, using input data provided by the fiber vendor and anchored to measurements made prior to radiation. A comparison between the simulations and experimental data shows that, in certain fibers where the damage is significant, the radiation-induced loss determined from amplifier measurements can be substantially less than that determined from passive transmission spectra.

[IEEE ]

PDF Article
More Like This
Radiation-resistant cerium co-doped erbium-doped fibers for C- and L-band amplifiers in a high-dose gamma-radiation environment

Ziwei Zhai, Arindam Halder, Daniel Negut, and Jayanta K. Sahu
Opt. Express 31(23) 38910-38920 (2023)

Proton and gamma radiation tests on nonlinear crystals

Ulrich Roth, Michael Tröbs, Thomas Graf, Jürg E. Balmer, and Heinz P. Weber
Appl. Opt. 41(3) 464-469 (2002)

Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment

Jing Ma, Mi Li, Liying Tan, Yanping Zhou, Siyuan Yu, and Qiwen Ran
Opt. Express 17(18) 15571-15577 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.