Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 23,
  • Issue 8,
  • pp. 2531-
  • (2005)

A Polymer-Dispersed Liquid Crystal-Based Dynamic Gain Equalizer

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents results obtained with a spatial light modulator (SLM) using a polymer-dispersed liquid-crystal (LC) material to provide dynamic gain equalization (DGE) for wavelength-division multiplexing (WDM) networks. We show the benefit of using a nonchannelized approach to adjust some physical parameters such as the ripple and the maximum obtainable attenuation slope for the spectra to be equalized. Particular attention is paid here to polarization dependence that can result from parasitic anisotropic multiple path interferences as well as induced anisotropy due to a planar transverse field when using a free-space SLM structure. In this frame, we demonstrate an original approach using a depolarizing prism that is only appropriate to such choice of material and that mitigates these effects. Finally, material engineering to widen the operating temperature range is also shortly presented in this paper.

© 2005 IEEE

PDF Article
More Like This
Pinning effect on the phase separation dynamics of thin polymer-dispersed liquid crystals

Yi-Hsin Lin, Hongwen Ren, Yung-Hsun Wu, Xiao Liang, and Shin-Tson Wu
Opt. Express 13(2) 468-474 (2005)

Photorefractive polymer-dispersed liquid crystals

A. Golemme, B. L. Volodin, B. Kippelen, and N. Peyghambarian
Opt. Lett. 22(16) 1226-1228 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved