Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 6,
  • pp. 2450-
  • (2006)

Electromagnetic Modeling of Organic Light-Emitting Devices

Not Accessible

Your library or personal account may give you access

Abstract

Based on the rigorous electromagnetic wave theory, a numerical model for simulating the radiation characteristics of organic light-emitting devices (OLEDs) is developed. In particular, a novel method for overcoming the numerical difficulty in taking the thick glass substrate into account is proposed. The numerical results confirm the importance of the effects of the thick glass substrate. The algorithms based on the numerical model are then used for evaluating the dependencies of OLED radiation characteristics on various parameters, including the thickness of different device layers and the cathode metal variety. In the study of the effect of emission layer (EML) thickness, it is found that the radiation spectral peak red shifts with increasing EML thickness. This trend is consistent with the experimental result.

© 2006 IEEE

PDF Article
More Like This
Light extraction from surface plasmon polaritons and substrate/waveguide modes in organic light-emitting devices with silver-nanomesh electrodes

Minji Hwang, Chanho Kim, Hyekyung Choi, Heeyeop Chae, and Sung Min Cho
Opt. Express 24(26) 29483-29495 (2016)

Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices

Kuan-Yu Chen, Yung-Ting Chang, Yu-Hsuan Ho, Hoang-Yan Lin, Jiun-Haw Lee, and Mao-Kuo Wei
Opt. Express 18(4) 3238-3243 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved