Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 30,
  • Issue 12,
  • pp. 1818-1828
  • (2012)

Rate-Adaptive Modulation and Coding for Optical Fiber Transmission Systems

Not Accessible

Your library or personal account may give you access

Abstract

We propose a rate-adaptive optical transmission scheme using variable-rate forward error correction (FEC) codes and variable-size constellations at a fixed symbol rate, quantifying how achievable bit rates vary with distance. The scheme uses serially concatenated Reed–Solomon codes and an inner repetition code to vary the code rate, combined with single-carrier polarization-multiplexed <i>M</i>-ary quadrature amplitude modulation with variable <i>M</i> and digital coherent detection. Employing <i>M</i> = 4, 8, 16, the scheme achieves a maximum bit rate of 200 Gb/s in a nominal 50-GHz channel bandwidth. A rate adaptation algorithm uses the signal-to-noise ratio (SNR) or the FEC decoder input bit-error ratio (BER) estimated by a receiver to determine the FEC code rate and constellation size that maximizes the information bit rate while yielding a target FEC decoder output BER and a specified SNR margin. We simulate single-channel transmission through long-haul fiber systems with or without inline chromatic dispersion compensation, incorporating numerous optical switches, evaluating the impact of fiber nonlinearity and bandwidth narrowing. With zero SNR margin, we achieve bit rates of 200/100/50 Gb/s over distances of 640/2080/3040 km and 1120/3760/5440 km in dispersion-compensated and dispersion-uncompensated systems, respectively. Compared to an ideal coding scheme, the proposed scheme exhibits a performance gap ranging from about 6.4 dB at 640 km to 7.6 dB at 5040 km in compensated systems, and from about 6.6 dB at 1120 km to 7.5 dB at 7600 km in uncompensated systems. We present limited simulations of three-channel transmission, showing that interchannel nonlinearities decrease achievable distances by about 10% and 7% for dispersion-compensated and dispersion-uncompensated systems, respectively.

© 2012 IEEE

PDF Article
More Like This
Rate-Adaptive Modulation and Low-Density Parity-Check Coding for Optical Fiber Transmission Systems

Gwang-Hyun Gho and Joseph M. Kahn
J. Opt. Commun. Netw. 4(10) 760-768 (2012)

FPGA-based rate-adaptive LDPC-coded modulation for the next generation of optical communication systems

Ding Zou and Ivan B. Djordjevic
Opt. Express 24(18) 21159-21166 (2016)

Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks

Murat Arabaci, Ivan B. Djordjevic, Ross Saunders, and Roberto M. Marcoccia
Opt. Express 18(3) 1820-1832 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved