Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Random Lorentz Band Model with Exponential-Tailed S−1 Line-Intensity Distribution Function

Not Accessible

Your library or personal account may give you access

Abstract

The question of the reasonable form of a line intensity distribution function for representation of molecular spectra is discussed. A distribution function which is proportional to 1/S in the low-intensity region is shown to be reasonable on a physical basis. A curve of growth is obtained for a continuous distribution of Lorentz lines which is proportional to 1/S, but cut off at a small value of S and decreases exponentially for large S to permit normalization. The limiting curve of growth for no cutoff (i.e., for a continuous exponential-tailed 1/S intensity distribution for 0<S<∞) is found to be a simple, conveniently handled expression. A comparison is made with the curve of growth presented by Godson for a distribution proportional to 1/S up to a maximum S and zero above. A comparison is also made with the curve of growth for a model with a discrete 1/S distribution (consisting of lines whose intensities are in geometric progression), which is calculated numerically from existing tables of the Ladenburg–Reiche function for several values of the intensity ratio. Criteria for the applicability of the curves of growth for the 1/S models are discussed; the curve developed here and the Ladenburg–Reiche curve form (approximate) lower and upper limits, respectively, to the curve of growth for any physically reasonable band model consisting of Lorentz lines.

© 1967 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical Systems, Singularity Functions, Complex Hankel Transforms

A. Papoulis
J. Opt. Soc. Am. 57(2) 207-213 (1967)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (71)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved