Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Flux density for ray propagation in geometrical optics

Not Accessible

Your library or personal account may give you access

Abstract

A general formula is derived that specifies the illumination (flux density) over an arbitrary receiver surface when light rays are reflected by or refracted through a curved surface. The direction of the deflected ray and its intersection with the receiving surface, used with the equation for the surfaces, lead to a transformation that maps an element of deflecting area onto the receiving area, by means of the jacobian determinant. A formula for the flux density along a ray path follows as a special case. An equation for the caustic surface is obtained from the latter. As an example radiation flux-density contours are calculated for a plane wave reflected from a sphere. Flux density and the caustic surface are calculated for a plane wave reflected onto a plane from a concave spherical lens and also for a plane wave refracted onto a plane through a hemisphere.

© 1973 Optical Society of America

Full Article  |  PDF Article
More Like This
The Contributions of the Single Surfaces to the Diapoint Coordinates*

M. Herzberger
J. Opt. Soc. Am. 42(8) 544-546 (1952)

Smith–Purcell radiation from a point charge moving parallel to a reflection grating

P. M. van den Berg
J. Opt. Soc. Am. 63(12) 1588-1597 (1973)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.