Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transfer of polarized infrared radiation in optically anisotropic media: application to horizontally oriented ice crystals

Not Accessible

Your library or personal account may give you access

Abstract

We have developed a theory for the computation of the polarization of infrared radiation in optically anisotropic media, with specific application to horizontally oriented ice crystals that frequently occur in cirrus clouds. Both emission and scattering contributions are accounted for in the basic formulation concerning the transfer of thermal radiation in anisotropic media. The symmetry relations of the phase matrix elements for horizontally oriented ice crystals, which are required in the infrared polarization formulations, are presented for the first time to our knowledge. Phase matrix elements for horizontally oriented hexagonal ice crystals are computed by a geometric ray-tracing technique. Radiance and linear-polarization patterns at a 10-μm wavelength that are emergent from cirrus clouds that contain plates and columns oriented in two-dimensional space are presented and discussed in physical terms. Downward polarization emergent from the cloud base is negative, while upward polarization emergent from the cloud top has a positive maximum value near the limb directions. These polarization configurations differ distinctly from the configurations of polarization emergent from ice clouds that contain randomly oriented ice crystals in three-dimensional space. Given these results, it appears feasible to infer the orientation characteristics of ice crystals in cirrus clouds with the use of infrared polarization measurements either above or below the cloud.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar

Anatoli Borovoi, Yurii Balin, Grigorii Kokhanenko, Iogannes Penner, Alexander Konoshonkin, and Natalia Kustova
Opt. Express 22(20) 24566-24573 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.