Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths

Not Accessible

Your library or personal account may give you access

Abstract

The ultimate success of near-infrared optical tomography rests on the precise measurement of light propagation within tissues or random media, the accurate prediction of these measurements from a light propagation model, and an efficient three-dimensional solution of the inverse imaging problem. To date, optical tomography algorithms have focused on frequency-domain photon migration (FDPM) measurements of phase-delay and amplitude attenuation, which are reported relative to the incident light, even though phase-delay and amplitude of incident light are nearly impossible to measure directly. In this contribution, we examine referenced, fluorescence-enhanced frequency-domain photon migration measured at excitation and/or emission wavelengths and report on a measurement strategy to minimize measurement and calibration error for efficient coupling of data to a distorted Born iterative imaging algorithm. We examine three referencing approaches and develop associated inversion algorithms for (1) normalizing detected emission FDPM data to the predicted emission wave arising from a homogeneous medium, (2) referencing detected emission FDPM data to that detected at a reference point, and (3) referencing detected emission FDPM data to detected excitation FDPM data detected at a reference point. Our results show the latter approach to be practical while reducing the nonlinearity of the inverse problem. Finally, in light of our results, we demonstrate the method for eliminating the influence of source strength and instrument functions for effective fluorescence-enhanced optical tomography using FDPM.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Influence of the refractive index-mismatch at the boundaries measured in fluorescence-enhanced frequency-domain photon migration imaging

Anuradha Godavarty, Daniel J. Hawrysz, Ranadhir Roy, Eva M. Sevick-Muraca, and Margaret J. Eppstein
Opt. Express 10(15) 653-662 (2002)

Source–detector calibration in three-dimensional Bayesian optical diffusion tomography

Seungseok Oh, Adam B. Milstein, R. P. Millane, Charles A. Bouman, and Kevin J. Webb
J. Opt. Soc. Am. A 19(10) 1983-1993 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved