Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scintillation index of modified Bessel–Gaussian beams propagating in turbulent media

Not Accessible

Your library or personal account may give you access

Abstract

The scintillation index is formulated for modified Bessel–Gaussian beams propagating in weakly turbulent media. Numerical calculations applied directly to the derived triple integral show that, for off-axis positions, the modified Bessel–Gaussian beams of higher than zero order scintillate less than Gaussian beams at large input beam sizes and low beam orders with the increasing width parameter initially contributing positively to this phenomenon of less scintillation. As the beam order exceeds two, this advantage is diminished. The modified Bessel–Gaussian beam of order zero is a special case, however, exhibiting lowest scintillation at small input beam sizes. When considered against the propagation length, higher-order modified Bessel–Gaussian beams continue to offer less scintillation than those of order zero. At various radial positions, the scintillation index of modified Bessel–Gaussian beams with orders higher than zero attains small values toward the beam edges but rises sharply when approaching the beam axis. The effect of inner and outer scales of turbulence is also studied, and it is found that while increasing the inner scale of turbulence seems to cause increases in scintillation, the influence of the outer scale is hardly noticeable.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Scintillation index of flat-topped Gaussian laser beam in strongly turbulent medium

Hamza Gerçekcioğlu and Yahya Baykal
J. Opt. Soc. Am. A 28(8) 1540-1544 (2011)

Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation

Halil T. Eyyuboğlu, David Voelz, and Xifeng Xiao
Appl. Opt. 52(33) 8032-8039 (2013)

Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence

Masoud Yousefi, Shole Golmohammady, Ahmad Mashal, and Fatemeh Dabbagh Kashani
J. Opt. Soc. Am. A 32(11) 1982-1992 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved